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The atomic finite-difference Hartree-Fock eq:quations are wriften as an operator equation 
in a finite Banach space, the finite-difference variables and Lagrange multipliers forming 
the components of a solution vector, U, in this space. The Coulomb and exchange operators 
arc treated as li-dependent perturbations, and the solution vector is expressed in the form 
of a vector perturbation series, U(n) := C,, V-P. An algorithm for calculating the co- 
etkient vectors U” is given. Through a scaling of units, one set of coeficient vectors sufices 
for the calculation of an isoelectronic sequence of states, starting from the neutral atom. 
Results are presented for the 1.P ‘S and 1~~2s %’ isoelectronic sequences. The Richardson 
procedure is used to extrapolate to the diffcrcntial limit. 

1. INTRODUCTION 

In 1973 Cayford, Fimple, and Unger [I] applied the finite-difference Newton 
Raphson algorithm (FDNRA) to the solution of the atomic Hartree-Fock (HF) 
equations. Marc rcccntly the FDNRA has been extended to treat the multi-configu- 
ration problem [2, 31. It has also been used for diatomic molecules [4]. In all of this 
work, however, we have not been able to bring the full power of the FDNRA to bear 
on the problem because of practical limitations. Including the finite-difference 
variables appearing in the Coulomb and exchange integrals in the generalized Newton - 
Raphson iteration (GNRI) causes the Jacobian matrix to become completely full 
(see the Appendices of [I] and [2]), and the method becomes impractical. Conse- 
quently we were forced to employ a self-consistent field (SCF) iteration in our 
algorithm. 

In the present work a perturbation series has been developed, based upon a 
representation of the finite-difference variables as a vector in a finite dimensional 
Banach space. Although this vector perturbation series may have a wide range of 
applications, it is developed here in connection with a specific problem, namely the 
atomic linite difference Hartree Fock (FDHF) problem, treating the interelectron 
potential as a perturation. ln this case it is the finite difference analog of the Z 
dependent perturbation of the HF equations [5,6]. 

Our previous work [l-4] can be considered from various points of view. One is 
simply as approximate numerical solutions of integrodifferential equations. On the 
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VECTOR PERTURBATION SERIES 2l$i 

other hand, the algebraic finite difference systems exist in their own right, and have 
properties which do not change as one goes to the differential limit. In studying these 
algebraic equations it is conceptually fruitful to consider them as operator equations 
in a finite-dimensional Eanach space, the algebraic variables (including Lagrange 
multipliers) becoming vector components in this space. It is this second point of view 
which is adopted in this paper. 

In -the following section the FDHF equations are introduced for a general atom 
with the Coulomb and exchange terms treated as a perturbation. I’hen, in Section 3, 
the Banach space representation of these equations is developed. In Section 4 the 
vector perturbation series is introduced and equations for the calculation of the 
coefhcient vectors are determined. Some practical details concerning calculations are 
given in Section 5, and results for the lP2s “S and ls2 ‘S isoelectronic sequences are 
presented in Sections 6 and 7. Some conclusions are drawn in the 6.nal section 
As an aid in implimenting the algorithm, Appendix A gives equations written out in 
detail for the M2.s “S’ case. Appendix I3 gives a procedure for controlling accuracy 
in the calculation of the coefficient vectors. 

2. THE FDHF EQUATIONS 

As introduced in [l), the FDHF equations are the result of a finite-difference 
algebraization of the HF integrodifferential equations, using first-order approxi- 
mations for the derivatives and integrals. Here we consider the FDHF equations 
with the Coulomb and exchange terms treated as a perturbation. 

In the HF approximation the total wavefunction of a.n NC-electron atom or ion is 
approximated by an antisymmetric product of single-electron spin-orbitals of the 
form. 

Generally, all spin-orbitals with the same values of the quantum numbers n, =: II and 
Jt = 1 have a common radial function R,,(r) and we wish to consider the FDHF 
equations relating to the set of N < N, independent radial functions. As in [l], 
we use a radial variable p with a finite range defined by 

P 
p = 1+ nr ’ (0 > 01, 

and define a minimal set of transformed radial functions, 

where the quantum number pair, rz,I, , take on all of the different values, n,l, ) in (;I 
ivithout repetition” 
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Following the procedures in [I], the p axis between p = 0 and p = l/a is divided 
by a mesh of M - 1 evenly spaced internal points, giving a mesh spacing of h = l/Ma, 
and the FDHF equations are written in terms of the algebraic variables, 

Pa’ w P&h), a = l,..., N; k = I,..., 111 - 1, (4) 
M-CC 

which are approximations to the values of the transformed radial functions at the 
mesh points. For an atom or ion of central charge 2, requiring N radial functions, the 
FDHF equations for A4 - 1 internal mesh points can be written in atomic units (au) 
as follows (see [I] for details). 

F,” zz - & (1 - h!,,) PF1 + v, [$ - & -+ z&l;kq Pmk 

-il~,,,i-- 8 WC% 3 43) p k = () , cu.=1 ,..., N; k= i,..., M-l, (5a) 

M-1 p jp j 
F,, = h c + - 1 = 0, a = I,..., N, 

j=l J 

M-1 p jp j 
FmB = h C + 8 x0 

j-1 ‘i 
for all values of a and /I such 
thatp <c~and6(1,,1,) = 1, (5c) 

where zk = 1 - akh, and I’~ is the number of spin-orbitals & containing the radial 
function 01. 

Equations (5a) are first-order finite difference equations written for each radial 
function a! at each internal mesh point k. The Kronecker deltas in the first and third 
terms are due to the boundary conditions, P,(O) = P&/a) == 0. The V,“: and Xak 
are the Coulomb and exchange terms respectively for radial function B at the kth 
mesh point. They are multiplied by a perturbation-strength parameter A. The eels 
are the Lagrange multipliers on normalization (a = /3) and orthogonality (p # 01, 
%8 = .& and the corresponding constraints are given by (5b) and (5~) respectively. 
If a representation is sought where the Lagrange multiplier matrix is diagonal or 
partially diagonal, the appropriate multiplier term in (5a) and orthogonality equations 
(SC) can be eliminated. 

The Coulomb and exchange terms in (5a) are given respectively by 
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where 

and 
h,Afl 

ji; __ P ‘q 
gh - A =o 4 n+lzj4 ’ 

where p = min(j, k) and q = max(j, k). The symbol C’,“’ denotes a restricted 
summation over the Ye spin-orbitals, &. , which share the radial function CL, while the 
subscript notation /3, denotes the radial function (value of ,B) belonging to the spin- 
orbital & . 

The FDHF equations (5) are a set of A-dependent nonlinear algebraic equations in 
the variables P,” and E,~ , one equation for each variable. The problem i.s to determine 
the A-dependent roots of these equations. 

3. BANACH SPACE REPRESENTATION 

The variables P,‘” and E,~ are now considered as vector components in a real finite- 
dimensional vector space. To be specific, let us suppose we are dealing with N’ off- 
diagonal multipliers, in which case our vector space is NM + N’ dimensional. 
Denote a general vector in the space by U, with components U, , i = l,..., NM + N’. 
Because of computational considerations (see Section 5), the variables are associated 
with the components of U in the following order. 

ux(k--ljts I= Pa’:, a = )...) ^ 1 hT, k = l,..., M - 1: (%;I 

C.-hw-l)+a = %tY T a = l,..., N, (7bj 

u h’hf+y,g = %‘3 > yaR = l,..., iv’, (-7s) \ 

where in (7~) yes simply increases by 1 for each off-diagonal multiplier Q. In (7a), 
as the component of U increases sequentially, the index a (radial function) goes 
through a complete cycle for each increase of li (mesh point) by one. Thus ai! of the 
variables Psi: for a given mesh point k are grouped together in U. 

If the norm of U is given its usual definition of 

and the distance between two vectors, U and V, is taken to be the norm of the 
diierence I U - V 11, then our vector space satisfies ali of the axioms of a normed 
metric space or Banach space .B. We note that 99 is the direst sum of two disjoin1 
subspaces, 
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where 98’p is the N(M - 1) dimensional subspace of the radial variables, P,“, and gE 
is the N + N’ dimensional subspace of the multipliers, E,~ . We define QP and Q, 
to be projection operators onto .!TSP and BG respectively. 

We can now express the FDHF equations (5) very concisely as an operator equation 
in g 

(Qp(H + LtV - &C - E) + Q,O)U = 0. (10) 

Comparison with (S), bearing in mind the ordering of (7a), shows that I-r is a linear 
operator with a block tridiagonal matrix representation (with N x N subblocks) in 
aP , and can be taken to be the identity in 39’, , although this latter is unimportant 
because of the following projector QP , V and X are nonlinear operators which map 
the components of U in gP into the values, VakPak and Xax‘, in (6a) and (6b) respec- 
tively, with the same ordering for the resulting vector as that established in (7a). 
Again, for completeness, we can take V and X to be identities in BG . 

Unlike H, V, and X, the operators, E and 0, mix the subspaces gP and aG . E is a 
nonlinear operator which replaces each component P,” in .gP by the sum, 

the E,~ being mapped from a:, . 0 is a nonlinear operator which replaces each com- 
ponent E,, in SYE by the sum, 

M--l p jp i 

h c -4, 
j=l LA 

and each component E,~ by the sum 

As E is followed by QP and 0 by Qi , the effect of E in BG and of 0 in BP are un- 
important, but to have an unambiguous definition we can take them to be identities 
in the respective subspaces. 

For a given value of the perturbation parameter fl, there exist N(M - 1) solution 
vectors U which are reduced to the null vector by the operator of (10). Since this 
operator is fl dependent, the solution vectors U(A) which satisfy (10) must also depend 
upon A. 

4. THE VECTOR PERTURBATION SERIES 

Let us concentrate our attention on the solution vector corresponding to the 
ground state, and assume it can be expanded in a power series in il. 

U(A) = f UMA”, (11) 
m =o 
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where the coefficient vectors U” are independent of A. We now require that the vector 
perturbation series (11 j be a solution of (10) for arbitrary values of X. 

When we operate on the vector series (11) with the operator of (IO:, 
the resulting vector has a different power series in fl in each of its com- 
ponents. Since the operator is nonlinear, the resultant vector is not simply the sum, 
Eel (&(H + -‘IV - -4X - E) + Q,0> U”‘fl”, but rather we must substitute the 
series for each and every component of the original vector U where it occurs in 
products in the resultant vector components. In order for the series (11) to be a 
solution for arbitrary L1, each term in flTL (12 = 0, 1, 2:.,.) in each component of the 
resultant vector must be zero independently. 

This procedure results in the following equations which serve to calculate the 
coefficient vectors sequentially. 

(QPW - El + P,O> UG = 0, 
Jun. = Q-1 > $2 = 1, I.$..., 

where the components of P-l are given by 

and J is a partly block tridiagonal Jacobian matrix of the same form as that given in 
the Appendix of [2]. A complete definition of the J matrix is best postponed until the 
next section, and given as part of a discussion of the solution of (12). 

Before going into the details of the solution of (12) and (131, it would be wei! to 
establish the important point that the calculation of a single set of coefficient vectors 
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u’” suffices for a whole isoelectronic series. Equations (5) with LI = 1 are the FDHF 
equations for a central charge 2 written in au. The same equations with /l # 1 can 
be viewed in two ways: (1) written in au for a central charge 2 and the Coulomb and 
exchange terms at strength (1, or (2) written in scaled units (su) for a central charge of 
.Zeff = Z/-/I and the Coulomb and exchange terms at full strength. In the scaled 
system of units we still have fi = m, = 1, but e = L’W. To justify the second view- 
point, we note that the Coulomb and exchange terms, Va* and Xmk, physically contain 
the square of the electronic charge, e 2. Then, in su where e2 = -4, the terms AT/,” 
and /lx,&, are at full strength. Next, the central potential term .Z/Mza3, physically 
contains a factor e2 which does not appear when written in au since e = 1. It should 
appear in su, however, as a A, and therefore we can set Z 3 &f/l, where &f is the 
effective central charge. In su the unit of length is I/L! Bohr radii, and the unit of 
energy is I/./l2 au (i.e., 1 su = l/.4” au). 

Since the coefficient vectors U”” in (11) and the equations used to calculate them, 
(12) and (13), are independent of Ll, only one calculation with a given value of Z can 
generate solutions for a range of values of Zeff = Z/A. 

5. CALC~JLATION OF THE COEFFICIENT VECTORS 

The equations (12) and (13) can be used sequentially to calculate the coefficient 
vectors U” up to any desired order. Equation (12) is just the Banach space represen- 
tation of the FDHF equations (5) with (1 = 0, the correspondence between the 
variables, P,” and E,~, and the components of U” being given by (7), (n.b. 
U(A = 0) = U”). A solution of this base problem is readily obtained by means of the 
generalized Newton Raphson iteration (GNRI) [2], 

UO(m+l) = UOCnr) _ (J'"')-1 F(") (15) 

where (nz) denotes the iteration, and the function vector F has components given by (5) 
with Ll = 0, 

Fw+-l)+rr -L Fmk, Y = l,..., N; lc = l,..., M - 1, (164 

FN(M-~)+a = F,, 2 a = l,..., N, (16b) 

F Lv‘h4+v,c3 = F UP 3 yea = I,..., N’, (16~) 

and the Jacobian matrix at the (m)th iteration has elements given by 

Ji(,) = (-$&)Iyo , i, i’ = l,..., NM + N’. 07) 

A detailed inspection of the partial derivatives (17) reveals that J is a partly block 
tridiagonal matrix (with N x N subblocks), and can be effectively inverted by means 
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of a partitioning (see Appendix of [2]). Tt is this computationai consideration that 
dictates the particular ordering given by (7) and (16). 

For the complete solution of (12) it remains only to specify a starting vector for 
the GNRI (15). With Ll = 0 in (5) the Coulomb and exchange terms are removed, 
and in the dif’rerentiai limit the solution would consist of hydrogenic radial functions 
(with central charge Z), hydrogenic energies for the diagonal multipliers, and ofL- 
diagonal multipliers zero. Therefore, a good starting vector W” would have com- 
ponents consisting of the values of the appropriate hydrogenic functions at the 
various mesh points and corresponding hydrogenic values of the multipliers, with the 
proper ordering (7). 

It is important to note that the hydrogenic functions and multipliers themselves 
do not provide sufficiently accurate values for the UJ coefficient vector in the series (al), 
because the components of the latter are the roots of the finite-difference system, 
not the differential system. 

The GNRI (15) is terminated when 

max(! Fi /, i =: I,...? NM + Nr) < tolerance. (18l 

Since the higher-order coefficient vectors depend upon Uo, it is well to solve the base 
problem (12) to a small tolerance. Since the Coulomb and exchange terms are missing 
in (12), no SCF iteration is necessary for the solution of the base problem. 

Having determined the zeroth-order coefficient vector U” to a low tolerance, 
we turn our attention to the sequential solution of (13) for the higher-order coefficient 
vectors U”, II = 1, 2,..., and we must now fully define the J matrix appearing in (13). 
It is simply the same J matrix used in the GNRI (15) for the base problem at the final 
iteration when the tolerance (18) is satisfied. 

Inspection of (14) will show that Gn-l depends upon all. coefficient vectors UP6 of 
order n -- 1 and lower. By using the algorithm of [2] in the same manner as for the 
GNRI, we can effectively invert J and sequentially solve (13) for the coeflicient 
vectors U’“, using the ones previously determined to calculate the next G vector. In 
this sequence only the U” and Gn-l vectors change with n, while the J matrix remains 
constant. Its effective inversion must be carried out for each order, however, since 
the inverse matrix J-l is never computed. It would be impractical to do so. 

In solving (13), the computation of G”-l takes a major share of the time because 
of the multiple summations. It is therefore wise to program (14) ivith finesse, taking 
advantage of relationships between G,:&,+, and G.&Y:, . 

There are some complications concerning the accuracy of the effective inversion 
of jr with the algorithm of [2] which are discussed in Appendix B. 

As with all perturbation theories, the radius of convergence of the vector pertur- 
bation series (11) depends upon the specific application. For any given isoelectronic 
sequence there is a minimum value of Zeff = Z/:ill below which the series diverges. 

For closed-shell configurations with no off-diagonal multipliers E,~ , the particular 
ordering of U given by (7a), leading to a partially block-tridiagonal J matrix, is not 

necessary. In this case it would be more efficient to group ail of the variables P&“,” ‘GZth 

581/31?2-7 
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the same value of a: together in U (i.e. U(.~~+J(~-~)+~ = P,“). This ordering leads to a 
partially tridiagonal J matrix. With nonzero off-diagonal multipliers, however, it 
would have nonzero elements far off the diagonal; hence the need for the ordering (7a) 
in the general case. 

6. ISOELECTRONIC SEQUENCE OF THE ls22s”S STATE 

Using the procedure outlined in the preceeding sections, the vector equations (12) 
and (13), for the case of the Li ls22s 2S (Z = 3) isoelectronic sequence, were sequen- 
tially solved for U”, II = 0, l,..., 15. Appendix A gives (12) and (13) written for this 
specific case. With the intent of using Richardson extrapolation [7] to obtain values of 
HF energy and multipliers in the h -+ 0 limit, the calculation was carried out four times 
for M = 50, 70, 90, and 110. Double precision was used throughout and the GNRI 
was always terminated when the condition (18) with a tolerance of lo-l8 was satisfied 
(see Appendix B regarding the accuracy of the solution (13)). 

The coefficient vectors U”, corresponding to each mesh spacing, were then used 
to sum the vector perturbation series (1 l), for integer vaIues of Zen from 3 to 10. 
Due to the scaling property, one set of coefficient vectors generates a set of self 
consistent solution vectors of the FDHF equations (5) for the whole isoelectronic 
sequence, Zeff = 3,4 ,... . One simply sums the perturbation series (11) with different 
values of the perturbation parameter n = Z/Zeff , Z being the value used to calculate 
the U” in (12) and (13). The particular value of Z used in the calculation does not 
effect the convergence of the series for a given value of Zerr , the larger or smaller 
values of (Ilra in each term being compensated by smaller or larger components of U”. 

We begin by investigating the convergence of the series for different values of Zen . 
As all components in the vector series converge at approximately the same rate, 
independent of mesh spacing, we can examine conveniently just one component, 
Uz,-, say, for M = 90. U,,-, is the Lagrange multiplier on normalization of the 1s 
function. In Table I a list of partial sums, 

Gw-,cz?ff , 4 = 2 u~-1t3/zeff>m, n = 0, I,..., 15; Zen = 3, 4, 6, 8, 10, (19) 
nZ=O 

are presented for A4 = 90. The values in Table I are in su. One must multiply them by 
Zzff/9 to convert to au. 

Examination of the consistent figures in the final partial sums for each value of Zen 
in Table I shows that the number of significant figures achieved by the sixteen term 
series as a function of Zefr is that given in Table II. For the neutral atom (Zeff = 3) 
we are close to the radius of convergence of the series. To substantially increase the 
accuracy would require a very long series indeed. In fact, a 31 term series was calcu- 
lated, but it provided only a one figure improvement for Zeff = 3. On the other hand, 
the series is strongly convergent for all positive ions, the 16 term series ranging from 
6 figure accuracy for Zerf = 4, to 12 figures for Zefr = 10. 
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TABLE I 

Partial Sums U2Mm1(Zeff , n) 
W2s %S State 

li 
- 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

io 

If 

12 

13 

14 

JJ 

zrr 4 3 

-3.99995343545 

-4.05446785918 

-4.87513034341 

-4.91747021822 

-4.93603940371 

-4.94467020107 

-4.94897862959 

-4.95126490744 

-4.95252974030 

-4.95324602013 

-4.95365640366 

-4.95389306544 

-4.95403030489 

-4.954llO38605 

-4.95415743496 

-4.95418526401 

4 6 

-8.99995343545 -8.99?95343545 

-5.29083925325 -6.52721064732 

-5.75246190063 -6.73237626837 

-5.77032403531 -6.73766875272 

-5.77619950494 -6.73882933932 

-5.77824758615 -6.73909904549 

-5.77901439386 -6.73916636468 

-5.77931957512 -6.73918422623 

-5.77944620122 -6.73918916698 

-5.77949998287 -6.73919056596 

-5.77952309301 -6.73915096673 

-5.77953308845 -6.73919108229 

-5.77953743569 -6.73919111579 

-5.77953933820 -6.73919112557 

- 5.77954017652 -6.73919112844 

-5.77954054841 -6.73919112929 

8 10 

-8.99955343545 -8.99995343545 

-7.14539634435 -7.51620776257 

-7.26050200619 -7.59016738615 

-7.26303477303 -7.59131056277 

-7.26340198988 -7.59146097479 

-7.26346599242 -7 59148’9.%4 . . I? 

-7.26337797379 -7.59148508799 

-7.26348035802 -7.591485558~00 

-7.26348085265 -7S9143567096 

-7.26348095769 -7,59:4:3568508 

-7.26348098026 -7.59148568750 

-7.2634.8098514 -7.55145568792 

-7.26348098620 -7.59145568800 

-77.26345098644 -7.59I485G8%31 

-7.26348098649 -7.59148563801 

-7.26348098650 -7.59;48568801 

u See Eq. (15); U&-; = ~~~~~~ is the Lagrange multiplier on Is normaiisation and the values are ir. 
scaled units (sa); M = 90. 

TABLE Ii 

Summary of Significant Figures 

z elf 16-Term series Double series 

3 4 I4 

4 6 

6 8 

8 10 

10 12 

The self consistency of the solution vector U(A), obtained by summing the 16 term 
series (11) for the various values of A = 3/Z,ff , has been checked by using it to 
calculate the Coulomb and exchange terms (6), inserting these in (5) (with Z = 3 and 
A = 3/Z,&, and solving (5) by the GNRI. It has been determined that in each case 
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TABLE III 

Self-Consistency Check 
0 W2s -S State, &ft = 6 

U, from perturbation series U, after one SCF iteration 

1 0.1846 0720 6277 0.1846 0720 6125 

2 0.0497 3876 5378 0.0497 3876 6842 

9 0.7047 2243 9014 0.7047 2243 8442 

10 0.1877 8439 7991 0.1877 8440 3510 

17 0.9227 5881 4417 0.9227 5881 3704 

18 0.2363 6847 1802 0.2363 6847 8715 

25 0.9103 4677 6379 0.9103 4677 5763 

26 0.2094 2937 0104 0.2094 2937 6188 

33 0.7466 0121 2287 0.7466 0121 1941 

34 0.1252 8939 5191 0.1252 8939 8878 

41 0.5128 3345 8555 0.5128 3345 8568 

42 0.0074 7285 6005 0.0074 7285 6618 

49 0.2840 7631 1595 0.2840 7631 1953 

50 -0.1141 3946 3848 --0.1141 3946 5878 

57 0.1159 3234 1467 0.1159 3234 2042 

58 -0.2030 9607 0870 --0.2030 9607 3972 

65 0.0289 5171 1778 0.0289 5171 2358 

66 -0.2216 3332 9099 -0.2216 3333 1067 

73 0.0030 0601 5919 0.0030 0601 6288 

74 -0.1522 3861 6434 -0.1522 3861 5972 

81 0.0000 8583 2870 0.0000 8583 2968 

82 -0.0436 6943 6518 --0.0436 6943 5515 

89 0.0000 0083 6654 0.0000 0083 6656 

90 -0.0007 3769 2688 -0.0007 3769 2193 

97 0.0000 0000 0000 0.0000 0000 0000 

98 -0.0000 0000 0005 -0.0000 0000 0005 

99 -6.7372 8750 1630 --6.7372 8750 1263 

100 -0.5921 9848 2568 -0.5921 9848 5516 

101 -0.0062 8193 5987 -0.0062 8194 7538 

a Vi corresponds to the ls(2s) radial function for i odd (even); U,, , U,,, , and UIi,,, are Lagrange 
multipliers whose values are in scaled units (su); A4 = 50. 
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U@l) is nearly self consistent in all its components to the number of significant 
figures indicated in Table II. Table III gives an example of this check for Zeff = 0 and 
I”vl = 50, and we see that the solution vector is nearly self consistent to 8 figures7 with 
a few components differing by 1 in the 8th place. 

Before proceeding to the extrapolation of the FDHF energies and multipliers+ 
we have employed the vector perturbation series a second time to improve the resu2s 
for Zeff = 3. In addition to the Coulomb potential of the bare central charge, the 
potential for the new base problem also includes Coulomb and exchange terms 
calculated from the solution generated by the first series. New Coulomb and exchange 
terms are multiplied by /l and treated as perturbations, while the old terms, multiplied, 
by (I - A>, are turned oft‘ as the new ones are turned on. So, effectively, the Neil- 
perturbation is the difference between the new and the old terms. Since the first series 
is converging only slowly for the Zeff = 3 case, this procedure is certainly preferable 

to calculating more terms in the original series. Some details of the calculation of the 
second series are given in Appendix A. 

The convergence of the second series for .& = 3 is checked by once again CW- 
sidering the partial sums (19) for M = 90. These are shown in Table IV. Although the 
second series was also calculated up to 15th order, the partial sums in Table IV show 
that the first order is sufficient for 8 figure accuracy, while the fourth order gives 

TABLE IV 

Partial Sums C&,-,(3, II) 
W2.s “S State, Zefr = 3 

II C’p.bf-1(3, I?) 
- 

0 -4.9541479696% 

1 -4.95422684278 

-4.95422682G26 

-4.95422681938 

-4.95422681944 

-4.95422681948 

-4.95422681950 

-4.95122681951 

-4.95422681951 

-4.95422681951 

IO -4.95422681952 

11 -4.95422681952 

12 -4.95422681952 

a See Eq. (19); second series following on 
from first series shown in Table I for Z,X = 
3; M = 90; atomic units (au). 
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TABLE V 

Neville Tables for Hartree-Fock Energy and Lagrange Multipliers 
1~~2s *S State, Zeff = 3 

HF Energy” 
-- 

12 = mesh” 
spacing Oth-order lst-order 2nd-order 3rd-order 

= Ii extrapolant extrapolant extrapolant extrapolant 

l/SO -7.43118818668 

l/70 - 7.43 194274477 

l/90 -7.43225276735 

l/l10 -7.43240959041 

160 -4.95140990147 

l/70 -4.95340601588 

1:‘90 -4.95422681952 

l/l10 -4.95464217153 

Ii50 -0.196720803886 

1170 -0.196525817085 

1,‘90 -0.196445609190 

l/l10 -0.196405015750 

l,!jO -0.002865470414 

l/70 -0.002864542566 

l/90 -0.002864158461 

1,‘llO -0.002863963461 

-7.43272874277 

-7.43272748943 

-7.43272715711 

-4.95548530173 

-4.95548367508 

-4.95548325935 

-0.196322705834 

-0.196322790850 

-0.196322814034 

-0.002863576058 

-0.002863570300 

-0.002863568585 

-7.43272692990 

-7.43272693094 

-4.95548294890 

-4.95548297642 

-0.196322828803 

-0.196322829812 

-0.002863567730 

-0.002863567417 

-7.43272693121 

-4.95548298359 

-0.196322830075 

-0.002863567335 

Q Atomic units (au). 
L a = 1 (see Eq. (2)). 
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TABLE VI 

Neville Tables for Hartree-Fock Energy and Lagrange Multipliers 
1~~2s “S State, Zeff = 4 

HF Energy 

!z = meshb 
spacing 

= lj(aMj 
Oth-order N-order 

extrapolant extrapolant 
2nd-order 

extrapolant 
3rd-order 

extrapokmt 

1,,50 --10.2703740842 

11’70 - 10.2734670834 

1,90 --10.2747387527 

I’110 -10.2753822020 

1’50 

l/70 

I,:90 

n/rro 

Ii50 -0.009396537633 

t/7(4 -0.009388430468 

I,:90 --0.009385091071 

l:‘i 10 -0.009383400276 

- 14.2757143426 

-14.2765387988 

- 14.2768772659 

- 14.2770484I57 

-m0.667280787783 

-0.666724832628 

--CA666496171452 

--CL666380451125 

--14.2773976073 
- 14.2773446226 

- 14.277395543s --14.2773946194 
- 14.2773946200 

-14.2773949941 

-to.2766889576 
- lo,2766846743 

- 10.2766859963 - 10.2766846259 
-10.2766846359 

-10.2766351868 

-0.666145712675 
-0.566146177486 

-0.666146034026 -0.666146173401 
-0.666146174245 

-0.666146117462 

-0.009379985505 
--0.009379974099 

-0.009379977619 -0.009379975966 
-0.009379975596 

-0.009379976416 

* Atomic units (au). 
b n = 1 (set Eq. (2)). 
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TABLE VII 

Neville Tables for Hartree-Fock Energy and Lagrange Multipliers 
W2s”S State, Z,,, = 6 

HF Energy” 

h = meshb 
spacing 

= l/(aM) 
Oth-order &t-order 2nd-order 3rd-order 

extrapolant extrapolant extrapolant extrapolant 

1,‘.50 

I!‘70 

1;90 

1:1ro 

l/SO 

l/70 

l/90 

l/l10 

l/50 

l/70 

l/90 

l/f110 

l/50 

1170 

l/90 

l/l10 

-34.7251676776 

-34.7256079894 

-34.7257876233 

-34.7258782055 

-26.9491500065 

-26.9545464996 

-26.9567645172 

-26.9578866602 

-2.36879393027 

-2.36693633179 

-2.36617236652 

-2.36578575437 

-0.025127743948 

-0.025096838404 

-0.025084129436 

-0.025077698292 

-34.7260666477 
-34.7260609197 

-34.7260626876 -34.7260609172 
-34.7260609177 

-34.7260616344 

-26.9601678466 
-26.9601577359 

-26.9601608565 -26.9601577366 
-26.9601577365 

-26.9601590000 

-2.36500133336 
-2.36500308547 

-2.36500254470 -2.36500308187 
-2.36500308261 

-2.36500286478 

-0.025064645130 
-0.025064679408 

-0.025064668829 -0.025064679624 
-0.025064679579 

-0.025064675226 

a Atomic units (au). 
b a = 1 (see Eq. (2)). 
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TABLE VIII 

Neville Tables for Hartree-Fock Energy and Lagrange Multipliers 
1~~2s ?S State, Zeff == 10 

HF Energya 

h = mesh” 
spacing 

.= lj(aM) 
Oth-order Ist-order 2nd-order 3rd-order 

extrapolant extrapolant extrapolant extrapoiant 

1’50 

1,70 

1,‘90 

1 110 

1:‘50 

1!70 

4 8’90 

I/f10 

fj50 

lj70 

f/90 

11110 

lj50 

1,170 

l/90 

l/f10 

-102.636170110 

-102.633697172 

- 102.632676140 

-102.632158547 

-84.3353462369 

-84.3456201251 

-84.3498409779 

--84.3519759926 

-8.78413726228 

-8.77732352454 

-8.77452146518 

- a.773 10349869 

-0.058735007017 

-0.058649331159 

-0.058614119904 

-0.058596306358 

-102.631121196 
-102.631108885 

-102.631112685 -102.631108878 
-102.631108830 

-102.631110421 

-84.3563220920 
-84.3562961529 

-84.3563041588 -84.3562961579 
-84.3562961569 

-84.3562993973 

-8.77022588106 
-8.770233cJ1301 

-8.77023081179 -8.77023300237 & 
-8.77023300452 

-8.77023211656 

-0.058560085473 
-0.058560254992 

-0.058560202671 -0.058560255253 
-0.058560255200 

-0.058560233928 

c Atomic units (au). 
’ Q = 1 (see Eq. (2)). 
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10 figures. The whole 16 term series gives 14 figures accuracy. This compares with 
only 5 figures for the original series up to 30th order. 

We are now in a position to extrapolate the FDHF values of total energy and 
Lagrange multipliers to the 12 -+ 0 limit using Richardson’s procedure [7]. Neville 
tables [8] of these extrapolations are given in Tables V through VIII for Zeff = 3, 4, 6, 
and 10, where all values have been converted to au. Perhaps ideally, the series for the 
various values of &ff should be truncated differently to give a standard SCF tolerance. 
However, the SCF tolerance desired for the smallest value of Zeff of interest sets the 
number of terms required in the series, and then for higher values of Zeff the series 
may as well be summed completely since the coefficient vectors are available. 
Here the 16 term series was summed throughout the range of Zeff considered 
(except that for Zeff = 3 the double series was used), and therefore the extrapo- 
lated values in the Neville tables are self consistent to the number of figures shown 
in Table IL 

In the Neville tables the four 0th order extrapolants are the FDHF values corre- 
sponding to the values of mesh point spacing (lz = l/Ma; a = 1; M = 50, 70, 90 
and 110) in the first column. The three 1st order extrapolants are each obtained 
by order 1z2 extrapolations of the two adjacent FDHF values. The two 2nd order 
extrapolants are the results of order 1~~ extrapolations of the upper and lower three 
FDHF values respectively, while the 3rd order extrapolant is the result of an order h6 
extrapolation of all four FDHF values. The 3rd order extrapolant is the most accurate, 
and the retention of significant figures moving from left to right in the table gives an 
indication of its accuracy. 

All of the FDHF values of Tables V through VIII extrapolate very well, giving at 
least 7 figure accuracy. In particular, the extrapolated value of HF energy for the 
neutral Li atom (-7.43272693 au) agrees to six figures with a calculation by Clementi 
[9] using an analytic basis set (-7.4327257 au). It can be argued that the current value 
is the more accurate: (1) it is based upon a set of solution vectors which are self 
consistent to I part in 101$ (2) the Neville table (Table V) indicates the extrapolation 
is good to at least 9 figures; and (3) since Clementi was using a finite basis set, by the 
variational theorem, his value of HF energy should be higher than a more accurate 
solution of the HF equations, and it is. 

The current value of the HF energy for neutral Li does not agree with a previous 
FDNRA calculation [l] because the former was for the spin unrestricted case (the 
two 1s functions not constrained to be equal). 

7. ISOELECTRONIC SEQUENCE OF THE Is”% STATE 

A vector perturbation series was also calculated with Z = 2 for the isoelectronic 
sequence of the helium ground state. Here the solution vector U(A) contains the 
finite-difference variables corresponding to the 1s radial function for the first M - 1 
components, and U,,(i!.l) is the Lagrange multiplier on normalization. 

Again a 16 term perturbation series was calculated for &f = 2, 6, and 10, and we 
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check on the convergence of the series for each of these values of Zeff by considering 
the partial sums of the 
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TABLE X 

Neville Tables for Hartree-Fock Energy and Lagrange Multiplier 
Is2 IS State, Zeff = 2 

HF Energy” 

/I = mesh” 
spacing 

= lj(aM) 
Oth-order Ist-order 

extrapolant extrapolant 
Znd-order 

extrapolant 
3rd-order 

extrapolant 

l/SO 

I:70 

Ii90 

1010 

l/SO 

l,l70 

1,‘90 

l,illO 

-2.86193462178 
--2.86168040729 

-2.86181010856 
-2.86168012230 

-2.86175875596 
-2.86168004664 

-2.86173273635 

-0.917683273358 
-0.917955830101 

-0.917816770538 
-0.917955645108 

-0.917871634566 
-0.917955595976 

-0.917899390404 

-2.86167999508 
-2.86167999516 

-2.86167999514 

-0.917955562522 
-0.917955562543 

-0.917955562538 

G atomic units (au). 
b n = 1 (see Eq. (2)) 

question of whether or not the convergence of the series for the neutral atom continues 
to get worse with increasing atomic number, can only be answered by further calcu- 
lations. The different behavior for He and Li may be due to the fact that one is a 
closed-shell atom and the other open shell. 

8. CONCLUSIONS 

A vector perturbation-series solution of the FDHF equations, based upon a 
representation in a finite Banach space has been developed. One set of coefficient 
vectors can be used to generate the FDHF solution vectors for an isoelectronic 
sequence (neglecting relativistic corrections). Through Richardson extrapolation, 
matrix elements or expectation values of any operator of physical interest can be 
determined in the differential limit. 

Considering the fact that each order in the vector perturbation series higher than 
the first requires more computation and storage than the SCF iteration, the latter 
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is preferable, assuming it converges easily, particularly if one is on\y interested in a 
single atom or ion. On the other hand, the set of coefficient vectors represents the 
solution for an isoelectronic sequence. Consequently, the vector perturbation approach 
might be very useful for calculations of electronic states of ionized impurity species 
ii2 plasmas. 

In cases where the SCF convergence is difficult, the monotonic convergence of the 
vector perturbation series may be particularly attractive. Although not reported here, 
the double (or in general multiple) series solution is very useful for negative ions. 

The computation of the vector perturbation series requires a large amount of 
storage, but not necessarily in core. The vector coefficients U” can all be stored 
external!y and each transferred into core as required, for example when performing 
the sununations of (14) and when summing the series (11) itself~ 

APPENDIX A 

For the 1.~~2~ “S isoelectronic sequence there are M = 2 radial functions and 
N’ = 1 off-diagonal multiplier. The U and F vectors are ordered following (‘7) and (16~. 

Written explicitly in terms of the vector components, the FDHF equations (5) fcr 
this case become 
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where the Coulomb and exchange terms (6) are, respectively, 

@4a) 

Wb) 

and 

U2j-lu2j 3 (A4c) 

where q = max(j, k), and zJz = 1 - akh. 
Substitution of the vector perturbation series (11) for each component of U in (A3) 

and (A4) and setting each term in L!F equal to zero, results in the vector equations (12) 
and (13), which for the present case become 

k = l,..., M - 1; 12 = 0, 1) 2 )...) (A54 

k = l,..., M - 1; 17. I= 0, 1, 2 ,...) 

rz = 0, 1, 2,... 

Wb) 

(A5c) 
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(A5d) 

(A5e) 

(A6b) 

(A6cj 

(A6d) 

(A6e) 

The summations in (A6) should be interpreted as giving zero whenever the upper limit 
is less than the lower limit. 

Equations (-45) with n = 0 are the base problem for this case and correspond TV 
(12). For rz > 0 (A5) correspond to (13), and the elements of the J matrix can be 
determined by inspection. 

For a double-series solution of (A3) one simply adds a term (I- L@(~~~U,,+, - 22) 
to (A3a) and a term (1 - L’Q(~~,~W,, - i&Iz) to (A3b), where the pIk, pZk, 2&“, and 
.&k are to be calculated from (A4) with the U vector obtained from summing the first 
(truncated) series. After substitution of the vector perturbation series for th.e com- 
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ponents of U, the above terms cause the following modifications to (AS). A term 
r112u&, must be added to the left of (A5a) and a term, pl;“U..:: + (SnO - S,J Z1k;, 
to the right. A term pzJLU$ 
QlJ~~; + 

must be added to the left of (A5b) and a term, 
(S,O - &) zz”, to the right. 

APPENDIX B 

Since each coefficient vector U” in the vector perturbation series (11) depends on all 
lower orders Um<n (see (12), (13), and (14)), it is important that (13) be solved very 
accurately so as to avoid an error buildup. Unfortunately the algorithm of [2] does not 
provide sufficient accuracy for the effective inversion of J in (13). One way to insure 
and control accuracy is to use the GNRI to solve (13). 

In order to understand this difficulty and its resolution in detail, it is best to refer 
to the 1.922s %S case treated in Appendix A. In the algorithm of [2] the J matrix, 
determined from (A5) by inspection for this case, is partitioned into four submatrices. 

J = (“, $3 031) 

where A is a 2(M -- 1) x 2(M - 1) block tridiagonal matrix with 2 x 2 subblocks, 
B is a 2(M - 1) x 3 matrix, C is a 3 x 2(M - 1) matrix, and 0 is a 3 x 3 null matrix. 
The inaccuracy stems from the fact that the A matrix is singular within the tolerance 
(18) used in the GNRI solution of the base problem, and the algorithm requires the 
effective inversion of il. 

The singularity of A is easily seen by referring to (A3) with 11 = 0, where the 
matrix elements of J are given by 

Jii, = (~,,==, , i, i’ = l,..., 2M + 1, W) 

and 

A,:<, = Jiir , i, i’ = l,..., 2N - 2. @3) 

These are the same matrix elements as given directly by (AS). The A matrix operates 
in the subspace BP . For a given mesh spacing, h, the A matrix depends only on the 
values of the Lagrange multipliers, U,,, , Uzbl , and U,,,, . When these three 
multipliers take on values which correspond to a solution of (A3) with /l = 0 
(U&,-l,U&r, and Up 2M+1), then the A matrix becomes singular, since there exists a ; 
vector in gP which is reduced to the null vector upon operation with A, namely 
QpUO (where QP is the projector onto gP). 

Let us note in passing that the whole J matrix is certainly not singular, since JU” 
gives a 1 in the 2M - 1 and 2M components of the resulting vector, as can be seen 
from (A3c) and (A3d). Therefore, this difficulty does not constitute a fundamental 
problem with the vector perturbation series. It is the partitioning of J as in (Bl) that 
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has rim into trouble. On the other hand, J is a large (2M + I> x (2M f 1) matrix: 
and it is prohibitive to invert it as a general matrix. 

The soIution of this problem lies in giving (.A5) (and in general (13)) additional 
freedom and using the GNRI. Define new variables, U& , C&+ and U.&+& , and 
constrain them to be respectively equal to i7~,W,_, , VitiI ) and U&,+, . Rewrite (A5), 
putting the G&& and G:;’ on the left with the other terms, and substitute the new 
variables respectively in place of the constants U&,)M-l , Ui$I, and U&+, . Set the 
resulting equations, which now all equal zero on the right, equal on the left to the first 
3M -f 1 components of a 2M + 4 dimensional function vector FYZ. Add to this set 
the three constraining equations, 

This extended system of equations in the variables Li,Jl (i = li.~., 2M 4 4j is now 
nonlinear? and the solution is not simply an effective matrix inversion. Put these 
variables in a 2M t- 4 dimensional vector u”, and set up a GXRI to solve this 
system. 

where (1~) denotes the iteration and 

i, i’ = l;..., 2M + 4. 

The Jacobian matrix given by (B8) can be partitioned as follows. 

where A is the same as before, but B is a 2(M -- 1) x 6 matrix and C is a 6 x 2(M - I$ 
matrix with all zeros in the lower three rows. D is a 6 x 6 matrix whose only nonzero 
elements are given by D,, = D5, = D,, = 1. To accommodate the J matrix (B9), 
the algorithm of [2] must be modified by substituting 

(CA-lB - 0) A, == CA-IF, - F, ( B 10) 

for (AS) of 121. 
In practice this scheme works very well indeed. To obtain a good starting approxi- 

mation for the GNRI, solve(AS) with the values CT&,-, , U&, and Ui,V1rl in J displaced 
from their accurate solution values by a small number, say 10-l*, so that the A matrix 
is nonsingular. Then solve the extended system with the GNRI with 6’&-, f V&, 

$3r/;rjz-8 



264 W. R. MOREAU 

and uLl in (B4) set to their accurate solution values. Typically the system 
is solved to a low tolerance in one iteration, going from a value of F$, = 
max(l Fin I, i = 1 ,..., 2M + 4) of lo-lo for the starting approximation to a value less 
than 10-l* after the first iteration. Also the system is stable. If more than one iteration 
is taken Fz,, will stay below lo-ls. 

The same scheme is applicable to the general problem. One extends the system (13) 
by the total number of multipliers (N + N’), defining a new variable for each and 
adding on (N + N’) constraining equations of the type (B4). This scheme gives one 
a control on the accuracy, since the precision is set for each order term in the vector 
perturbation series by the GNRI tolerance (18). 

ACKNOWLEDGMENT 

1 would like to acknowledge the help of Dr N. K. Rahman of the Institute di Chimica Fisica, 
C.N.R., Universit& di Pisa, Italy, who through some enlightening discussions on perturbation theory, 
fist started me thinking along the lines of the present paper. 

REFERENCES 

1. J. K. CAYFORD, W. R. FIMPLE, AND D. G. UNGER, J. Conlput. Phys. 15 (1974), 81. 
2. W. R. FUIPLE, B. J. MCKENZIE, AND S. P. WHITE, J. Cornput. Phys. 22 (1976), 435. 
3. W. R. FIMPLE AND M. J. UNWIN, ZIZL .T. Quuni. Chenz. 10 (1976), 643. 
4. W. R. FIMPLE AND S. P. WHITE, Znt. J. Quunt. Chem. 9 (1975), 301. 
5. C. FROESE, Proc. Roy. Sot. Ser. A 244 (1958), 390. 
6. C. S. SHARMA AND C. A. COULSON, Proc. Phys. Sot. London 80 (1962), 81. 
7. L. F. RICHARDSON, Phil. Trans. Roy. Sot. Zmmbt Ser. A 226 (1927), 299. 
8. E. H. NEVLLLE, J. Zndiun Math. Sot. 20 (1934), 87. 
9. E. CLEMENTI, Phys. Rm. 127 (1962), 1618. 


